Development of a computer aided diagnosis model for prostate cancer classification on multi-parametric MRI
نویسندگان
چکیده
Introduction: Prostate cancer (PCa) is one of the most prevalent cancers among men. Diagnosis depends on a trans-rectal ultrasound (TRUS)-guided biopsy to estimate the stage and aggressiveness. The accuracy of this estimate is confounded by a high false negative rate due to a lack of consistent imaging characteristics that make the identification possible in a majority of cases and consequent use of a universal sextant needle targeting scheme for all patients. Multi-parametric magnetic resonance imaging (mpMRI) maps the prostate in 3D, but is relatively complex to interpret and suffers from inter-observer variability in lesion localization and scoring. Computer-aided diagnosis (CAD) systems have been developed as a solution as they have the power to perform deterministic quantitative image analysis. We measured the accuracy of such a system validated using accurately co-registered whole-mount digitized histology [1].
منابع مشابه
Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملClassification of clinical significance of MRI prostate findings using 3D convolutional neural networks
Prostate cancer (PCa) remains a leading cause of cancer mortality among American men. Multi-parametric magnetic resonance imaging (mpMRI) is widely used to assist with detection of PCa and characterization of its aggressiveness. Computer-aided diagnosis (CADx) of PCa in MRI can be used as clinical decision support system to aid radiologists in interpretation and reporting of mpMRI. We report on...
متن کاملComprehensive Framework for Computer-Aided Prostate Cancer Detection in Multi-Parametric MRI
Prostate cancer is the most diagnosed form of cancer and one of the leading causes of cancer death in men, but survival rates are relatively high with sufficiently early diagnosis. The current clinical model for initial prostate cancer screening is invasive and subject to overdiagnosis. As such, the use of magnetic resonance imaging (MRI) has recently grown in popularity as a non-invasive imagi...
متن کاملStatistical Textural Distinctiveness in Multi-Parametric Prostate MRI for Suspicious Region Detection
Prostate cancer is the most diagnosed form of cancer, but survival rates are relatively high with sufficiently early diagnosis. Current computer-aided image-based cancer detection methods face notable challenges include noise in MRI images, variability between different MRI modalities, weak contrast, and non-homogeneous texture patterns, making it difficult for diagnosticians to identify tumour...
متن کاملInfluence of the Different Primary Cancers and Different Types of Bone Metastasis on the Lesion-based Artificial Neural Network Value Calculated by a Computer-aided Diagnostic System,BONENAVI, on Bone Scintigraphy Images
Objective(s): BONENAVI, a computer-aided diagnostic system, is used in bone scintigraphy. This system provides the artificial neural network (ANN) and bone scan index (BSI) values. ANN is associated with the possibility of bone metastasis, while BSI is related to the amount of bone metastasis. The degree of uptake on bone scintigraphy can be affected by the type of bone metastasis. Therefore, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018